
Corrigenda

Direct Displacement and Coupling of Prop-2-ynylic Acetates with Organocuprates

By R. S. Brinkmeyer and T. L. Macdonald

J.C.S. Chem. Comm., 1978, 876.

On p. 877, Scheme 3, Structure (11) should read:

Detection of Reactive Rhodium Containing Intermediates Following Flash Photolysis of a $Tris(\beta-diketonato)$ rhodium(III) Complex

By Guillermo Ferraudi, Paul A. Grutsch, and Charles Kutal

J.C.S. Chem. Comm., 1979, 15.

In the Summary, the last word on the last line should read Rh^{III}-hydride.

Oxidation of N-Alkylhydroxamic Acids: Interception of N-Acyl Nitrones

By S. Altaf Hussain, Ashutosh H. Sharma, M. John Perkins, and David Griller J.C.S. Chem. Comm., 1979, 289.

On p. 290, first footnote should read: Benzylamine is not benzoylated by (4a) under these conditions.

Reaction of η -Tetracarbonyldicyclopentadienyldiruthenium with Phosphine and Phosphite Ligands

By James A. S. Howell and Anthony J. Rowan

J.C.S. Chem. Comm., 1979, 482.

On p. 482, r.h.s., end of line 7 and beginning of line 8, formula for compounds (6a—c) should read: (cp)Ru(CO)(PPh₃)-COR.

On p. 483, formula at head of column 1 of the Table should read: (cp)Ru(CO)(PPh₃)COR.

'Organic Metals'. New Classes of p-Type Dopants for Converting Polyacetylene, $(CH)_x$ into the 'Metallic' State

By Shek-Chung Gau, JoAnn Milliken, Adam Pron, Alan G. MacDiarmid, and Alan J. Heeger J.C.S. Chem. Comm., 1979, 662.

On p. 662, Table should read:

	Conductivity b Ω^{-1} cm ⁻¹
cis-[CH] _x	1.7×10^{-9}
trans-[CH] _x	4.4×10^{-5}
[CHI _{0:30}] _x	5.5×10^2
$[CH(As\tilde{F}_5)_{0\cdot 1}]_x^c$	$1 \cdot 1 \times 10^3$
$[CH(H_2SO_4)_{0.106}\cdot(H_2O)_{0.070}]_x^d$	1.2×10^3
$[\mathrm{CH}(\mathrm{HClO_4})_{0\cdot127}\cdot(\mathrm{H_2O})_{0\cdot297}]_x^{\mathrm{e}}$	1.2×10^3
$[CH(SbF_6)_{0:05}]_x^f$	4.0×10^2
$[CH(SbCl_8)_{0.0095}]_x$ g	1.0×10^{1}
$[CH(SbCl_s)_{0:000}]_{\pi}$	1.0×10^{-1}
$[CH(SbCl_5)_{0\cdot022}]_x^h$	2
$[\mathrm{CH}(\mathrm{BF_2})_{0\cdot 09}]_x^{1}$	1.0×10^2

On p. 663, line 2 should read: the CH and the SbF₆ must be largely ionic, e.g. [(CH)^{+0.05}-.